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Abstract

Base-pressure and surface-pressure measurements together with schlieren and

shadowgraph observations were conducted on 6-deg half-angle wedges of various

separation-edge shapes. The lip shock, which emanates from even a sharp separa-

tion edge, was found to be of substantial strength, contrary to the prevailing belief.

In most cases investigated here, predominant cause of the lip shock appears to be
the viscous separation effect similar to that of the separation shock emanating

from a circular cylinder, rather than the inviscid rotational effect.
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Experimental Investigations of Wedge Base

Pressure and Lip Shock

I. Introduction

The base-pressure problem, which was once thought to

be more or less a completely solved problem, is having a

revived interest because of increasing practical applica-
tions and because of further clarification of the inade-

quate assumptions involved in existing theories. For

example, it was clearly demonstrated by Roshko and

Thomke (Ref. 1) that the theoretical reattachment pres-

sure condition assumed by Chapman et al, (Ref. 2) and

Korst (Ref. 3) is in fact untrue. Whereas their theories

(Refs. 2, 3) assume that the pressure is fully recovered at

the reattachment, Roshko's experimental results (Ref. I)
show that the pressure is only half recovered. Such inade-

quate assumptions in the theories are bound to result in

disagreements with experimental base pressures. The dis-

agreements brought in controversies as well as the empiri-

cal approach, such as proposed by Nash (Ref. 4) to remedy

the inadequacy. Such an approach may find a lucky agree-

ment with experimental data under particular conditions

investigated but will not solve the problem at all.

It was our initial goal to experimentally investigate the

base-pressure problem of a wedge under a completely

laminar condition, in which case only a rigorous theo-

retieal pursuit might be made. In spite of a preliminary

estimate based upon Chapman's correlation data (Ref. 2),

however, our experimental flow field turned out to be in

a transitional range. Although the flow was barely in an

entirely laminar condition at the lowest Reynolds number

investigated, the free-shear layer became turbulent almost

immediately after separation at the base edge at the
highest Reynolds number. We were therefore in a some-

what embarrassing sitnation: we were unable to com-

pletely investigate either the laminar or turbulent case.

An excuse may be that, after all, most of the existing

experimental results are in a similar incomplete state.

Perhaps because the test condition was in the transitional

range, however, we were indeed fortunate to come across

a variety of near-wake shock patterns and other abundant

wealth of information which stirred our curiosity.

At the very early stage of the investigation, the so-called

lip shock, which emanates from the sharp separation edge,
was not only clearly identified but also observed to inter-

act with the wake (recompression or neck) shock so as

to form a distinct slip stream. A typical shadowgraph is
shown in Fig. 1. It seems to have been conventional to

assume that the lip shock is weak and the static-pressure

JPL TECHNICAL REPORT 32-1033 1



WAKE SHOCK

LIP SHOCK

FREE-S_EAR

LAYER SL!P

STREAM

Fig. 1. Shadowgraph of flow field behind wedge
(M, -- 2.61, Re2 - 1.01 X 10"l

ratio across the lip shock is a matter of a few percentage

points increase. If the assumption is correct, however, the

slip stream should not he observed so distinctly. A prelim-

inary rough estimate from schlieren pictures indicated

that the pressure jump could in fact be several hundred

percent. Since, by the presence of the lip shock of sub-

stantial strength, the expansion at the separation edge is

further complicated, the flow actually overexpands and is

then recompressed by the lip shock. Undoubtedly, the
initial free-shear layer must have a quite distorted profile.

Therefore, even when the reattachment phenomenon of a

shear layer becomes completely understood, the base-

pressure problem cannot be solved until the distorted
initial velocity profile is determined. Moreover, the lip

shock could directly influence the pressure-recovery pro-

cess and the near-wake velocity profile behind the re-

attachment point through its interaction with the wake
shock.

In spite of vast literature existing on the base-pressure

and separated-flow problems, the lip shock and its poten-

tially important effects had ahnost completely escaped

theorists' as well as experimentalists' attention. Under

these circumstances, our interest was more strongly drawn

into the lip shock rather than the base pressnre, despite

the original intention. Nevertheless, the base pressure

was always measured and its data are included in this

Report for completeness. Investigations into the lip shock

were limited at this time to its strength, cause, and overall

effects, but this much information is believed to be suM-

cient to warrant its publication before more thorongh and

elaborate, detailed measurements are made.

II. General Description of Experiments

The experiments were conducted entirely in the Jet

Propulsion Laboratory 20-in. supersonic wind tunnel, the

test section of which was 18 in. wide and 20 in. l-tigh.

Basic arrangements and dimensions of the test models

are shown in Fig. 2. All of the test models were two-

dimensional and mounted horizontally, spanning the en-

tire width of the test section. The wedge-plate configura-

tion, Fig. 2 (a), was first tested at the free-stream Mach
number, M_ = 2.01, 2.61, 3.02, 3.51, 4.00, and 4.54, and

was actually a combination of a solid wedge followed by

a plate with its top surface aligned with the centerline

of the wedge. The plate had 24 static-pressure holes of

0.031 in. diameter drilled through the plate, the pressure

hole nearest the wedge base being 0.031 in. away from

the base. The pressure reading of this hole was considered

to be the base pressure in this configuration. The purpose

of the investigation with this wedge-plate configuration
was to obtain data for the solid-wall reattachment and

to compare them with those in the wedge-alone case in
which the :flow underwent fluid-fluid, or free, reattach-

ment.

Several wedge models of essentially the same dimension

were used for the wedge-alone case. The solid model was

used for optical observations, and a pressure model with

altogether thirty pressure taps of 0.031 in. diameter each
was fabricated, with particular interest in the detailed

pressure distribution near the separation edge and in the

spanwise base-pressure distribution.

In addition to these sharp regular wedges, eight modi-

fied-edge models were also tested for the specific purpose

of investigating the cause of lip shock rather than obtain-

ing engineering data for various geometrical shapes,

24.ooo-- 
h = 0.500

I
(a) WEDGE WITH SPLITTER PLATE

,_ : 6 dee

--- 2h = 1.000

(b) WEDGE

Fig. 2. Basic test model arrangements
(dimensions in inches)
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althDugh the base pressure was ahvays measured. The

modifled-edge models consisted of a &_-in.-long fixed

front part and 1-in.-long interchangeable rear parts. The

modifed shapes were (Fig. 3): four rounded edges of

radii 0.05, 0.10, 0.25 in., and a fully rounded 0.45 in.; a

knife edge of 0.02 in. blade thickness and 5 deg undercut

edge with < 0.002 in. claimed sharpness at the tip; and

three boat-tail models of boat-tail angles 5, 10, and 17 deg.

Final optical observations of the regular wedge were

actually made by the use of this two-piece model (Fig. 3,

top) because the solid one-piece wedge was in such a

poor condition when we reached the stage of acquiring

good pictures that the separated layer was visibly more

disturbed than in preliminary photographs. Tile knife-

edge model had three pressure taps; the boat-tail models
and the two rounded models of radii 0.05 and 0.10 had

six, but the other two rounded models of radii 0.25 and

0.45 had fourteen and thirteen, respectively.

6 o

REGULAR WEDGE

ROUNDED (r = 0.05} KNIFE EDGE

Y
ROUNDED (r=O.lO) BOATTAIL (fi=5 °) -'_

ROUNDED (r = 0.25) BOATTAIL ( B = I0 °)

ROUNDED (r =0.45) BOATTAIL ( B = 17 °)

Fig. 3. Test models with modified edge shapes
(dimensions in inches)

All of the wedge-alone configurations, regular as well
as modified, were tested at M. = 2.61, 3.51, and 4.54.

Nearly full capability of the wind tunnel was utilized at

each Mach number, so that the model Reynolds number

Re., based upon the wedge-surface condition and wedge

length ranged from 0.2 X 10'; to 2.0 X 10". Static-pressure

measurements were made mostly by the use of a multiple-

pressure-measuring system (MPMS) which scanned all of

the pressures including an accurate reference pressure as

well as a vacuum by a single transducer. The transducer

was a 5-psia Statham gauge chosen from eight in hand

and was extremely linear at any reading. The static-

pressure distribution along the centerline of the wedge

wake was measured by a !4,;-in. diameter tube, which

pierced through the base into the wedge, and the same
transducer located outside of the tunnel. Since the avail-

able longitudinal traverse was limited to 3 in. by the

length of the wedge, three probes having a static-pressure

hole of 0.031 in. diameter at different locations were pre-

pared so as to be able to traverse the necessary length.

Pitot-pressnre surveys were also conducted, but their

purpose was limited to examinations of the assumptions

made in estimating the lip-shock strength. Two pitot

probes inclined at 0 and 20 deg to the free-stream direc-

tion were made from a 0.036-in. hypodermic needle,

flattened and ground to 0.025 in. overall thickness at the

tip with an opening of 0.009 in. The transducer for the

pitot pressure was a 15-psia gauge.

Optical observations consist_xt of long-exposure (!'v-,._

sec) schlieren and short-exposure (approximately S 1,.see)

spark shadowgraph pictures. Sample pictures with a grid
mounted on the other side of the tunnel window showed

very little distortion except in a narrow region very close

to the separation edge.

III. Shock Wave Patterns

Shock-wave patterns for the wedge-plate configuration

at six Mach numbers and at six representative Reynolds

numbers are shown in Figs. 4a-f. In addition, shock pat-

terns with the triangular tripping device (Refs. 5, 6)

mounted on the wedge surface 1 in. from the leading edge

are also shown in the six t)ottom pictures of Figs. 4a-f.

The tripped boundary layer cases were made at the maxi-

mum Reynolds numl)er condition, but the Reynolds num-

ber with artificial trippings has little significance, of course.

It becomes clear by comparing these photographs that

relative orientations of the lip shock and the wake stwck

JPL TECHNICAL REPORT 32-1033 3



Fig. 4a. Schlieren pictures at M1 2.01 (wedge-plate);

from top: Re2 1.78, 1.22, 0.98, 0.64, 0.38, and

0.19 X 10';; at bottom: with boundary-layer trip

Fig. 4b. Sch)ieren pictures at MI z 2.61 (wedge-plate);

from top: Re: _ 1.83, 1.25, 1.03, 0.66, 0.38, and
0.19 X 10'_;at bottom: with boundary-layer trip

are strongly dependent in this Math number range not

only on tile Reynolds number but also on the Mach num-
ber. The Mach nmnber independence principle does not

apply. There is evidence to suspect that the dependence
on the Mach number is particularly strong in the Mach

nmnber range investigated but perhaps less so beyond

this range.

The most pronounced difference is that, whereas the lip

shock can be clearly distinguished from the wake shock

at lower Mach numbers, the two shocks tend to become

inseparable at higher Mach numbers and in fact merge to

form one continuous shock at the highest Mach number.

This merging of the two shocks is particularly prominent
at lower Reynolds numbers, where the flow was entirely

laminar as judged from the shadowgraphs simultaneously
taken, and was also observed at M_ = 6 (Ref. 7). It is quite

unlikely, even at higher Mach numbers, to have the rela-
tive orientation of the two shocks reversed; i.e., the lip

shock, which must be formed by some mechanism associ-

4 JPL TECHNICAL REPORT 32-1033



Fig. 4c. Schlleren pictures at M1 --_3.02 (wedge-plate);

from top: Re.2= 1.93, 1.32, 1.08, 0.67, 0.42, and

0.21 X 10';; at bottom: with boundary-layer trip

Fig. 4d. Schlieren pictures at Mz --_ 3.51 (wedge-platel;

from top: Re_ ----1.95, 1.33, 1.08, 0.82, 0.42, and

0.21 X 10"; at bottom: with boundary-layer trip

ated with the expansion of the viscous layer at the separa-

tion edge, is unlikely to be located clearly below the wake

shock, which is formed by the turning of the free-shear

layer near the reattachment.

Many factors contribute to the variations of the shock

pattern. First, for a given base-pressure ratio pb/'pl, where

Pb is the base pressure and p, the free-stream static pres-

sure, the direction of the separated free-shear layer, e, is

less steep relative to the free-stream direction for larger

Mach numbers, as shown in Fig. 5. (This direction was

computed from the base pressure by the isentropic inviscid
formula and was found to agree well with the observed

flow direction.) Therefore, the flow deflection at the re-

attachment is smaller for larger Maeh numbers. Second,

since the smaller inclination means a longer length of the

free-shear layer, the free-shear layer is thicker at the

attachment. Because of the factor 1/sin e multiplying the

thickness and because of the larger boundary-layer thick-

ness before separation, the reattachment process is slower

JPL TECHNICAL REPORT 32-1033 5



Fig.4e. Schlierenpicturesat M_ 4.00 (wedge-plate);

from tap: Re_. 2.06, 1.40, 1.14, 0.72, 0.44, and
0.22 \_ 10'; at bottom: with boundary-layer trip

Fig. 4f. Schlieren pictures at M1 = 4.54 (wedge-plate);

from top: Re2 = 1.93, 1.38, 1.13, 0.72, 0.45, and

0.22 X 10';; at bottom: with boundary-layer trip

for larger Math nutnlwrs (of. pressure-recovery distribu-
tion). Furtlwnnore, tilt' relation between the Math angle t_

and the Prandtl-Meyer angle ,. gives

1 Z-_ .'_1_
d / t

d,, 1 31:

which indicates that for a given turning angle, coalescence

of wavelets takes place more slowly at higher Math num-

bers. All told, the higher the Maeh numbers, the farther

away from the reattaehment point the wake shock tends
to be formed.

On the other hand, the Mach angle /-_ relative to the

free-shear layer may be taken as an approximate angle of

the lip shock if the lip shock is not very strong. Maeh-

line orientation angles, e _, relative to the free-stream

direction, are demonstrated in Fig. 6, in which the nega-

tive value of e - I* means that the lip shoek is inclined

6 JPL TECHNICAL REPORT 32-1033
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Fig. 5. Isentropic flow direction vs

base-pressure ratio

upward and vice versa. In the range of base-pressure ratio

p_,/p, > 0.25, i.e., in the low Reynolds nmnber range, the

Mach line is oriented with a larger negative value at lower
Mach numbers. Since the wake shock is formed close to

the reattachment region, as described in the preceding

paragraph the lip shock and the wake shock are well sepa-
rated at lower Mach numbers, whereas tile two shocks

become more and more inseparable as tile Mach number

increases and eventually merge into one continuous shock.

Graphs of the relation between e - /,. and p_,/pl for differ-

ent Mach numbers cross at about p_,/p, -0.95. Accord-

ingly, the shock patterns for different Maeh numbers

become somewhat similar to each other at large Reynolds
numbers.

When the two shocks are clearly distinguishable from

each other and the lip shock is not oriented too far upward,

i.e., when the Math number is relatively small and the

Reynolds number is sufficiently large, a slip stream parallel

to the free-stream direction is seen to emerge as a white

line from the point where tile two shocks meet each other.

Additional observation worth reporting is the orienta-

tion of the lip shock relative to the free-shear layer. The

I0

MI =2.01 --_.
2.61

3.02---.

3.51----.

4.00---.

4.54----

/

b

/
.1

t

2O
o o._ 0.2 o.3 o.4 o.s o.s

BASE-PRESSURE RATIO pa/pl

Fig. 6. Math line orientation angle (isentropicl

0,7

lip shock eo,nes out of the free-shear layer rather quickly

at lower Mach numbers, but the lip shock is completely

imbedded in the free-shear layer at higher Mach numbers,

particularly when the Reynolds number is also large. This

is due in part to the smaller Mach angles of the free-shear

layer at higher Mach numbers for a given base-pressure

coefficient (Fig. 7). The difference in the inclination angle

of the lip shock, with which we are concerned, is actually

more pronounced because of the observed fact, as, shown

later, that the larger the Mach number, the stronger tile

lip shock, i.e., the overexpansion before the lip shock is

more enhanced, and hence the lip shock is more tilted

toward the free-shear layer direction. Plotted points in

Fig. 7 are the lip-shock angle relative to the free-shear

layer. Moreover, not only the inviscid approximation dic-

tates a larger area expansion (Fig. S), but also the initial

boundary-layer thickness before separation is already

thicker for higher Maeh numbers, resulting in even more

pronounced difference in the free-shear-layer thickness, as

a very rough estimate (Fig. 9) indicates. Both the more
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nearly parallel lip-shock angle and tile thicker free-shear

layer contribute to the above phenomenon.

The orientation of the lip shock relative to the wake

shock and to the free-shear layer is schematically sum-

marized in Fig. 10, which will be referred to again in con-

nection with the behavior of the static-pressure recovery

distribution and with the results of pit•t-pressure surveys.

LOW MACH NUMBER HIGH MACH NUMBER

WAKE SHOCK

(_)_ EXPANSION FAN _//

EXPANSION J HIGH REYNOLDS NUMBER

LOW REYNOLDS NUMBER

Fig. 10. Dependence of shock pattern on Mach number

and Reynolds number |schematic summary)

These observations concerning the shock pattern are

described for the wedge-plate configuration, Fig. 2(a).

However, as typical comparative shadowgraphs in Fig. 11

indicate, the shock patterns behind the wedge without the

splitter plate are quite similar to those with the splitter

plate, and the above observations concerning the shock

pattern for the wedge-plate configuration equally apply

to the shock patterns behind the wedge alone.

IV. Base Pressure

Presented first in Fig. 12 is a comparison between the

base pressure for the wedge-plate configuration and that

for the wedge alone. There has been only a speculation as
to the effect of different reattachment conditions on the

base pressure. This figure demonstrates that the base pres-

sures for the two cases are quite close to each other, par-

ticularly at lower Math numbers. Nevertheless, the base

pressure for the wedge alone is generally lower than that

for the case of solid-wall reattachment. In other words, the

free reattachment condition is capable of sustaining a

larger pressure recovery, as one might expect, due to lesser

energy losses than along a solid boundary.
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Fig. 12. Base pressures of wedge-plate

and wedge alone

These pressure data were obtained with fences of 3 in.

length, as depicted in Fig. 13, mounted 2_":., in. from the
two side walls of the wind tunnel. These fences were

originally utilized by Ginoux (Ref. 8) for his base-pressure

studies in an attempt to isolate the side-wall boundary-

layer effects and to achieve a better two-dimensionality in

the central portion. According to Ginoux, the effect of the

fence is to increase the base pressure. His test condition
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Fig. 13. Fence geometry

/

roughly corresponds to the second lowest Reynolds num-

ber at M1 = 2.61 in the present experiment, and indeed

the same effect can be found in Fig. 14 in which the base

pressures of the wedge, both with and without the fences,

are given. However, this tendency reverses as the Reynolds
number increases at the same Mach number. At larger

Mach numbers, moreover, the base pressure was consis-

tently lower with the presence of the fence. Figure 15

shows the transverse distributions of the base pressure

along the horizontal centerline of the wedge taken at two
extreme test conditions (Z -- 0 is the vertical centerline).

Interaction of the side-wall boundary layers, which were

always turbulent in the present experiment, with the base

flow must be quite complicated; whereas the base pres-

sure in the interacting region is substantially lower than

the average base pressure at the lower Mach number and

the lower Reynolds number, the situation seems to be

somewhat reversed at the opposite test condition. Uni-

formity of the base-pressure distribution is not appreciably

improved with the fences. Nevertheless, with the strength

of recent confirmation by Lewis (Ref. 9), we may be justi-

fied in assuming that the flow field with the fences is nearly
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Fig. 15. Spanwise base-pressure distribution of
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two-dimensional. We might add that, although the pres-
sure recovery after the reattachment was seldom com-

pleted within the 3-in. distance from the step, the extended

fences of 6-in. length did not change the base pressure
at all.

The knife-edge model was provided with end plates in

its cavity to prevent the seepage of higher pressure on the

wedge surface into the low-pressure cavity, and with a

partition 2_ in. from each end to reduce the possible cross

flow caused by the side-wall boundary-layer interaction

(Fig. 16). The end plates and the partitions were _i6-in.-

thick Lucite. By the insertion of the partitions, the flow

Fig. 16. Partitions mounted in cavity of knife-edge
model (dimensions in inches)
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field was assumed to have been made effectively two-

dimensional, and the base pressure thereby obtained was

compared with that of the regular wedge with the fences

in Fig. 17. Although the base pressure of the knife-edge

model is somewhat lower than that of the regular wedge

at lower Reynolds numbers and at the lowest Math num-

ber investigated, the base pressures for the two models are

essentially identical to eaeh other in most conditions, the

result of which was rather surprising to us. As will be

shown later, the shock patterns and the lip-shock strengths

were also virtually identical for the two models.
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The rounded-edge models were not provided with the

fences, and their base-pressure data are presented in

Fig. 18 in comparison with those of the regular wedge

without the fences. The base pressure of these models

was somewhat larger than that of tile regular wedge,

particularly at larger Reynolds numbers and larger Mach

numbers. Increase in the base pressure was enhanced with

increasing radius.

Figure 19 demonstrates the effect of boattailing on the
base pressure. Since the fences were not mounted on the

boattail models, the base pressure of the regular wedge

without the fences is again shown for comparison. The

boattail models were found to have a substantially larger

base pressure than the regular wedge. At the expansion

corner preceding the boattail, the boundary layer on the

wedge surface is drastically expanded. The boundary layer

is therefore much thicker, when it separates either at the

separation edge at the rear end of the wedge or from the

boattail surface, than that on the regular wedge. The larger
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boundary-layer thickness combined with the shortened

base height by boattailing may be considered to reduce

the effective Reynolds number of an equivalent regular

wedge. Roshko and Lau (Ref. 10) suggest, on the other

hand, that the transition distance in the free-shear layer

is scaled to approximately sixty times the momentum thick-

ness at separation. The thicker boundary layer at the sepa-

ration edge of the boattail models would then extend the

laminar region, at least, in the free-shear layer and could

also delay transition even after reattachment. Such effects
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Fig.20. FlowpatternsbehindlO-degboattailwedge
(top)andregularwedge(bottom);MI -_ 3.51 and

Re: = 1.35 _ 10"

are clearly seen in the comparative shadowgraphs, Fig. 20.

Since our base-pressure data were taken in the transitional

range, the effect of delayed transition is such as to shift

the base-pressure curve of the regular wedge to higher

Reynolds numbers, or as mentioned above, the effective

Reynolds nmnt)ers of the boattail models are smaller than

the actual ones. In any event, the base pressure of the boat-

tail models should he larger than that of the regular wedge

in the present test conditions. Nevertheless, there appear

to be other significances of the base-pressure data; for

example, substantially larger base pressure even under the
laminar reattachment condition at M. -4.54 cannot be

explained by the simple argument as above. More system-

atic investigations into the effect of boundary-layer thick-

ness relative to the base height are to be made in the near

future and may citable us to answer these questions.

Undoubtedly, the Reynolds number in the present ex-

periment was in the transitional range. Since we have not

made the hot-wire studies, it is diflqcult to exactly deter-

mine the transition point. However, judged from those

shadowgraphs taken at lower Mach numbers (so that the

density was large enough to show detailed conditions of

the free-shear layer), we are inclined to take the same

viewpoint as Holder and Gadd (Ref. 11) (Fig. 21). Roshko

(Ref. 12) speculates in a somewhat different manner in

identifying the pressure-coefficient variations in terms of
the transition location.

Attempts were made to correlate the pressure data for

different Mach numbers, to compare the pressure coeffi-
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Fig. 21. Variation of base pressure in
relation to transition location

cients with the Chapman and Korst theories, and to esti-

mate Nash's partial pressure-recovery numbers. Those

data, however, are believed to be of little value, particu-

larly in the transitional range, and are not presented here.

V. Pressure-Recovery Distribution

The static-pressure recovery distribution was measured

for the wedge-plate c_nfiguration by a row of pressure
holes of 0.031-in. diameter tapped through the plate. On

the other hand, the static pressure distribution along the

centerline of the wake of the wedge alone was measured

by a t.i_;-in, static pressure probe, which pierced through

the base of the wedge, thereby avoiding the tip effect

(Fig. 22). The measurements were made for three typical

Reynolds numbers at each of the three Mach numbers,

M', = 2.61, 3.51, and 4.54. Results are shown in Figs. 23-25;

p is the static pressure, p, the free-stream static pressure,
and X the distance downstream from the base. In addition,

Fig. 26 shows the pressure-recovery distribution with a

tripping device mounted on the wedge surfaces. The

boundary layer on the wedge surfaces was always laminar

without the tripping device in the present experiment. The

separated shear layer became turbulent almost immedi-

ately after the separation at the largest Reynolds number.
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Fig. 22. Static-pressure probe

At the intermediate Reynolds number, the transition took

place somewhat downstream but still in the free-shear

layer, and the reattachment was therefore turbulent. The

flow field was entirely laminar until after the reattachment

at the lowest Reynolds number investigated.

Characteristically, the pressure-recovery distributions
for the two different reattachment conditions are not

appreciably different from each other. This is particularly

true for the low Reynolds number cases; the static pres-

sure is monotonically recovered. It seems to be a general

tendency that, as the Mach number decreases, the static

pressure overshoots the free-stream value. While the rea-

son for it is unknown, the overshoot is generally observed

also in the low-speed experiments (Tani, Ref. 13), as long

as the boundary layer separates more or less parallel to

the main flow (Roshko and Lau, Ref. 10). There are, how-

ever, minor differences between the two cases. The pres-

sure is recovered slightly more quickly behind the wedge

than with the plate, at least in the case of laminar reattach-

ment. This difference must have resulted in part from the

difference in the behavior of the dividing streamline near

the reattachment; the dividing streamline should bend

toward the plane of symmetry to cross it orthogonally

at the reattachment point behind the wedge, (Kubota,

Ref. 14), whereas the dividing streamline makes an angle

with the plane of a solid boundary (Oswatitsch, Ref. 15).
In addition, after the reattaehment, the distributed stress

in the shear layer might be more quickly released due to

the zero-stress condition (instead of the zero-velocity con-

dition) on the centerline in the case of free reattachment

behind the wedge, resulting in a quicker readjustment of

the pressure. The static pressure also begins to rise some-

what earlier than with the plate. This earlier rise is due

not only to the orthogonality condition described above,

which brings the reattaehment point closer to the base for

a given base pressure, but also due to the free-shear layer

direction, which is more sharply tilted toward the center-

line because of the lower base pressure at a given Reynolds

number. It is still desirable to carry ont a theoretical inves-

tigation as to why the base pressure behind the wedge is

lower than that with the splitter plate.

When the reattachment is turbulent at higher Reynolds

numbers, the pressure-recovery distribution displays a

more complicated behavior. It shows a hump in the midst

of pressure-recovery process at higher Mach numbers or

a local peak after the pressure is suflqciently recovered

at lower Mach numbers. Such anomalies are particularly

pronounced when the wedge-surface boundary layer was

made turbulent (Fig. 26).

These humps and local peaks can be attributed to the

interaction of the lip shock, whose strength was found to

be substantial (cf. Sec. VI), with the wake shock. Take,

for example, a sehematic shock pattern, as in Fig. 10a,
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which roughly corresponds to the case, M, - 2.61, Re.., =

1.0 X 10" in Fig. 23. The flow near the shear layer is

expanded first through the expansion fan generated at the

separation edge, recompressed by the lip shock to Region 3

where the pressnre is approximately equal to the base

pressure, and further compressed by the wake shock to

reach Region 4. On the other hand, the flow farther away

from the shear layer is recompressed only through the

wake shock. Therefore, the pressure in Region 4 is higher

than that in Region 6, and must be readjusted by a weak

expansion wave so that the pressure in Region 5 balances

that in Region 6, the two regions being separated by a slip
stream. Since the pressure in Region 5 or 6 is normally

lower than the free-stream static pressure, the pressure

must slowly increase to attain the free-stream value eventu-

ally. This situation explains the appearance of the pressure

peak and the pressure minimum which follows. Numerical

estimates of the peak and minimum values agree rather

well with the experimental results in this example. More-

over, the location of the pressure minimum is shown to

have a good correlation with the location where the lip

shock meets the wake shock (Fig. 27). The location of the

pressure peak, on the other hand, does not necessarily cor-

relate with the lip shock-wake shock point, because the

wake shock is formed by a coalescence of weak compres-

sion waves which are emanated from the slow turning of

the flow near the reattachment point. The pressure peak

could therefore appear even upstream of the lip shock-

wake shock point and nearer the reattachment point.

Indeed, as shown in Fig. 28, the pressure-peak location

correlates well with the isentropic reattachment point,

which was computed from the base pressure by the use of
a flow table.

At higher Math numbers the same process must occur,

but the lip shock is now completely imbedded within the

free-shear layer, as shown in Fig. 10(b). This is particularly

true for the tripped boundary layer, since the shear layer

is already quite thick at the separation. In such cases, the

pressure variation due to the lip shock-wake shock inter-

action appears as the hump in the midst of the pressure-

recovery process of the shear layer, rather than as the

distinct local pressure peak after the static pressure is

almost completely recovered.

The dependence on the Mach number of the appear-

ance of the hump or the peak should not be looked upon

as universal. If the step or the base height is sufficiently

large, the flow pattern as shown in Fig. 10(b) should

approach that as shown in Fig. 10(a), even at a fixed Mach

number. Consequently, the location of the hump will move

toward the end of the pressure-recovery process, and the

hump may eventually become the peak. Such a tendency
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is clearly seen in the pressure distributions measured by

Roshko and Thomke (Ref. 1) for three different step

heights.

The pressure initially recovered in Region 5 or 6 after

a relatively steep increase is substantially lower than the

free-stream pressure because the wake shock is quite

strong. The higher the Mach number, the lower the initial

recovery pressure, reflecting the stronger wake shock. The

pressure now continues to increase rather slowly. The slow

pressure recovery might be in part attributable to the non-

uniform static pressure distribution behind the wake shock.

Since the wake shock is covered by the expansion fan, the

pressure away from the shear layer (Region 8) is higher

than that in the near Region 6. As the shear layer grows

after the reattachment, it slowly penetrates into higher

and higher pressure regions, resulting in the slow increase

in the static pressure along the centerline.

These explanations, which attribute the cause of the

humps to the interference of the lip shock, were substanti-

ated, indirectly though, by Roshko in his unpublished

experimental results. When the separation edge has been

smoothly tapered to give a proper boattail angle so that

the flow direction before the separation is guided to be

almost parallel to the free-shear layer direction, no expan-

sion should be involved and hence the lip shock is expected

either to be eliminated or to reduce its strength. Under

such conditions, the hump in the pressure-recovery distri-

bution was indeed observed to disappear. Our experience

was that it is very difficult to completely eliminate the lip

shock; if the matching of the pressure before the separa-

tion edge and that on the base is such that the former is

larger than the latter, the regular lip shock is formedi

whereas if the former is smaller than the latter, the flow

separates on the boattail surface, and the lip shock emerges
from the separation point as a separation shock. It will be

a subject of, perhaps academic, interest whether the lip

shock can be completely eliminated if the matching is per-

fect. By the reasonable matching, in any event, the lip-

shock strength is not only reduced, but also the lip-shock
inclination is shifted outward. Both effects account for the

disappearance of the hump.

the two shocks are merged to become one continuous

shock at higher Mach numbers, as shown in Fig. 10(d).

Therefore, the interaction as described above simply does

not take place. Nevertheless, the merged shock is not

of negligible strength, and the recompression process is
slower than that at lower Mach numbers.

VI. Lip Shock

A. Estimation of the Strength of Lip Shock

As already discussed, the lip shock interacts with the

wake shock to form a slip stream which can be distinctly

observed. The lip shock, furthermore, appears to be re-

sponsible for a queer behavior of the static-pressure recov-

ery distribution. These two effects of the lip shock point

out that the lip shock must be of finite strength. If this

expectation is indeed the case, the lip shock not only

affects the pressure recovery, but should also contort the

initial velocity profile of the free-shear layer so that

the basis of most of the base-pressure theories would be

endangered. In this section, therefore, an inquiry is made

as to the strength of the lip shock based upon shadow-

graphs which give a better definition of the lip shock
than schlieren pictures.

Some of the earlier investigators assumed that the ex-

pansion fan, which spreads out approximately from the

separation edge, ended somewhat ahead of the lip shock,

as sketched in Fig. 29(a). Such an assumption, which

must have been made upon the unfounded and erroneous

conviction that the lip shock is negligibly weak, is incom-

patible with the fact that the lip shock must catch up

Contrary to the turbulent reattachment, the effect of the

lip shock-wake shock interaction is unlikely to appear in

the low-Reynolds-number laminar reattachment. At lower

Mach numbers, the two shocks are well separated, as

shown in Fig. 10(c). The lip shock, however, is weak

and oriented away from the recompression region. The

interaction is therefore not only weak, but has little influ-

ence on the recompression process. On the other hand,

EXPANSIONFAN_

(c)
LIP SHOCK

SHEARLAYER

Fig. 29. Lip shock and expansion fan
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with the expansion fan inasmuch as the lip shock is a

wave of any strength. Indeed, schlieren pictures always !

indicate that the region between the front edge of the

expansion fan and the lip shock is entirely expanding.

Therefore, our preliminary, assumption was made such

that the lip shock was the terminal ray of the expansion

fan, Fig. 29(b).

Estilnation of the lip-shock strength based upon this

assumption was made first by the use of sehlieren pic-

tures since our shadowgraphs were not yet taken at the

time. It was immediately discovered that the expansion
fan extended to result in a substantial overexpansion far

t)elow tile base pressure, which must predominate behind

the lip shock, and hence that the lip shock was of sub-

stantial strength. The shock configuration as depicted in

Fig. 29(b) is then equally inaccurate because the shock

angle should be steeper than the Math angle and hence

the lip shock cannot be one of the rays emerging from the

center of the expansion fan. In the meantime, shadow-

graphs were taken and provided a better understanding

of the lip-shock orientation. The lip shock was found in

fact to be slightly curved, and the eccentricity between

the center of the expansion fan and the extension of the

lip shock toward the separation edge was conveniently

negotiated by the presence of the separating shear layer,

Fig. 29(c). Although the behavior of the lip shock within

the shear layer is most difficult to understand, it is easy

to understand why the lip shock must be curved. Since

the lip-shock strength is finite, and the shock angle is

steeper than the Mach angle, the shock penetrates deeper

and deeper into the expansion fan, i.e., into lower Maeh-

number regions, as it moves from the edge until it is inter-

cepted by the wake shock. The shape of the lip shock
under such eiremnstanees is a curve, as is well known.

In order to compute the lip-shock strength, the expan-

sion fan was assumed to be centered at the separation

(_tge, although the center of the expansion fan was actu-

ally covered by the shear layer and its location was not

precisely known. The estimation proceeded as follows:

Since the shear layer, as well as the lip shock, is clearly

seen in most of the shadowgraph pictures, a point P

(Fig. 30) was chosen on the lip shock and fairly close to,

but outside of, the outer edge of the separated free-shear

layer. Upon drawing a line joining the point P and the

separation edge S (the chain line in Fig. 30), the angle _l

is determined. In the following, the condition before the

separation will be denoted by a subscript 2 and that im-

mediately in front of the lip shock by 3'. Since the chain

line passing through the point P is one of the rays in

EXPANSK)N

a = 6 deg

B

LIP SHOCK

Fig. 30. Flow field and notations pertinent to
estimation of lip-shock strength

the expansion fan and is the Math line corresponding to

the condition 3', there is a relation

_,_ v_ = a + _/+//

or

where /z is the Maeh angle, v the Prandtl-Meyer angle,

and a the half-angle of the wedge, which is the flow direc-

tion before separation relative to the free-stream direction.

Angle v_ is known for a given free-stream Mach number

M_, and v_ /x_ can be computed, which uniquely gives

M_. Because the expansion process from 2 to 3' is isen-

tropic outside of the shear layer, the pressure just before

the lip shock, p', can be determined.

On the other hand, the static pressure immediately

behind the lip shock, p:_, must be approximately equal to

the wedge-base pressure p_, because a) the free-shear layer

is usually quite straight in the present experiment except

for those conditions depicted in Fig. 10(b) and hence the

pressure gradient across the free-shear layer must be quite

small, and b) the point P is chosen to be near the outer

edge of the free-shear layer. Under this assumption, the

lip-shock strength, _ = p:_/p:', is taken to be equal to p_,/p':,.

The lip-shock strength thus computed for the wedge-

plate model is plotted in Fig. 31. It is clear that the lip

shock is of substantial strength, quite contrary to the com-

mon belief that the increase in static pressure across

the lip shock must be merely a matter of a few percent.

Results of similar analyses applied to the schlieren pictures

for both free-wedge and step configurations taken by
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other authors (Refs. 1, 2, 8, ll, 16--18) are given in Fig. 32,

which equally shows substantial strength of the lip shock.
[Schlieren pictures do not have as much resolution as

shadowgraphs. The estimate of the lip-shock strength
had to be made by a rougher assumption, depicted in

Fig. 29(b), and gave not only inaccurate but also some-

what smaller values of _ than the more rigorous estimate
applied to shadowgraphs.]

It is almost incredible to us why such a simple estimate

has never been attempted before and why the unfounded

assumption of negligibly weak lip shock has been left

uncontested. Only experimental evidence that tends to

substantiate the weak-lip-shock assumption is found in

an attempt by Hastings (Ref. 16) to measure the static-

pressure field. Although his use of a reflection plate is

somewhat questionable, the result revealed a negligible

strength of the lip shock in his case. However, our estimate

from his accompanying schlieren picture also gave a neg-

ligible strength. Therefore, our use of his experimental

result is only to substantiate our method of estimation, but

should not be taken to conclude that the lip shock is
always weak.

The estimated lip-shock strength was also obtained for

the regular wedge and the knife-edge wedge (Fig. 33),

for the rounded-edge models (Fig. 34), and for the boattail

models (Fig. 35). For the boattail models, the lip-shock
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strength was estimated only for those lip shocks which

emerge from the rear separation edge. As will be discussed
later, similar shocks can also emerge from the boattail sur-

face. For the boattail and rounded-edge models, a some-

what different procedure had to be used because the

center of the expansion fan was even more ill-defined for

these models. The lip-shock orientation angle/3 was mea-

sured as a tangent to the lip shock relative to the free-

stream direction. Since (cf. Fig. 30 again)

4 - (v2+ ,_)=/3 + 0

we can find the conventional shock angle 0 with respect

to the flow direction ahead of the lip shock by assuming

_,_. Since v" also determines M_ and p:_, we obtain pb from

(r + 1)_ + (r - 1)
(M_ sin 0) 5 = 2-/

and

pb _
p._, p_,

We could obtain _ by iteration until pb agrees with the

experimental value.

The lip shock is not only of substantial strength, but the

strength is also about the same for all models in terms of
,/the overexpansion ratio p:_, p_. We are not certain why the

lip-shock strength _ has a good correlation with p'/p,,, inde-

pendently of the Mach number, at least for a given

geometry. We only note here that the correlation between

and p_/p., presented in Figs. 31, 33-35 was actually re-

plotted from an extremely good correlation obtained first

between the overexpansion ratio p'/p_, and the base-pres-

sure ratio pb/p..,, for example, Fig. 36. Several other correla-

tions were also attempted, but in no case was as good

a correlation as that in Fig. 36 achieved.

Approximate similarity in the dependence of _ on p'3/p._,

regardless of model shape however, does not imply that

the lip-shock strength at a given free-stream condition is

independent of model shape. Since the base-pressure co-

efficient pb/Pl, and hence Pb/P'_, varies for different model

shapes, the lip-shock strength varies as well.

In spite of the good correlation above, neither the over-

expansion ratio p'3/p., nor the base-pressure ratio pb/P'., can

be determined a pr/or/when a test condition is given; the

correlation exists between the overexpansion ratio, which

O
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pressure in front of lip shock

Fig. 36.

I0 o

can be determined from shadowgraphs, and the base pres-

sure measured experimentally. Although, once the base

pressure has been measured, the overexpansion ratio, and

hence the lip-shock strength, can be determined from Fig.

36, it may still be desirable to have some, even if rough,

means to present the lip-shock strength in terms of prede-

terminable quantities, i.e., Mach number and Reynolds

number. It was found that the lip-shock strength could be

roughly correlated with a somewhat strange combination,

MzRe..., as shown in Fig. 37, whereas when lip-shock

strength is plotted against Re.,, a strong dependence on the
Mach number was noticed. Since the data are limited and

"1-

°!I---
60

,4

8

&
U
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I0 s 2 4 6 106 2 4 6 10 7

M 2 Re 2

Fig. 37. Reynolds number dependence of lip-shock

strength (wedge-plate and wedge alone)
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dependence of lip-shock strength on the Mach number is

still noticeable, and particularly since the significance of

M.,Re., is not clear, the correlation in Fig. 37 should not

be taken too seriously. Nevertheless, this sort of plotting

serves the purpose of demonstrating, for example, that the

lip-shock strength for the boattail models (Fig. 38) is ap-

preciably weaker than that for the regular wedge at a

given test condition. This fact is hidden in the _ vs p_/p_,

plottings.
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Fig. 38. Reynolds number dependence of

lip-shock strength (boattail)

Before leaving this section a remark is in order relative

to Fig. 33. The lip-shock strengths for the regular wedge

and the knife-edge model are seen to be very well corre-

lated with each other. Since the base pressures for the two

models were already found to be virtually identical (Fig.

17), not only the lip-shock strengths but also the shock

patterns must be the same for the two models under a

given free-stream condition. Although these observations

might not be too much of a surprise since the undercut

step has been known to give nearly the same flow field as

the rectangular step (Ref. 16), they are still contrary to

our expectations and will be referred to again near the
end of Sec. VI-D.

B. Examinations of the Estimation

Since the discovery of the substantial strength associated

with the lip shock is contrary to the prevailing belief, exam-

inations of the adequacy of the estimation are in order.

First, the measured expansion angle _ is plotted against

the base-pressure coe_cient pb/pl in Fig. 39. Plotted also

in the same figure are the expansion angles for the trailing

end of the expansion fan if there were no overexpansions,

i.e., _ = 1. With differences between the two angles

amounting to as much as 10 ° or even more, there is no
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Fig. 39. Overexpansion angle for lip shock

(wedge-platel; lines indicate trailing-end

angles of expansion fan without

overexpansion

doubt that the flow has definitely overexpanded and that

the finite strength as estimated is not due to error in mea-

suring expansion angles.

Once the angle 7/and hence the local Mach number M,_

as well as the pressure p_ were determined, three quan-

tities, _, 0, and pb/p,, were involved with respect to the lip

shock. The following examinations were made:

(1) By knowing pb/Pl, we immediately found _, as in the

preceding estimation. From _ and M', the shock angle 0

or its orientation angle /3 could be computed. The com-

puted/3 shows good agreement with /3 measured in the

shadowgraph pictures in Fig. 40. In other words, the shock

angle is compatible with the estimated lip-shock strength.
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(2) M_ determined the flow direction ahead of the lip

shock. Therefore, the measured p gave the shock angle O.

From 6 and M:_, the lip-shock strength _ could be com-

puted without knowing pb/pl. The lip-shock strength

thus computed shows good agreement with ._ previously

determined as pl,/p" in Fig. 41, i.e., the measured shock

angles give appropriate shock strengths.

(3) Finally, although redundant, the base-pressure co-

efficient pt,/pl was computed from _ obtained above and

p_, and compared in Fig. 42 with the p_/p, experi-

mentally obtained. Agreement in this comparison is some-

what less satisfactory than the previous two agreements.

This deficiency, however, has resulted mainly from the

inaccuracy in determining the angle/3 of a tangent to the

lip shock. In fact, once we obtained the comparison in

Fig. 42, we could readjust /3 readings within plausible

error limits so as to obtain an almost perfect correlation.

Such iterations were not made, however, in order to

demonstrate largest possible errors involved in our estima-

tion procedure. Nevertheless, it is confirmed that the mea-

sure(] expansion angle _1and the measured shock angle/3

provide appropriate base pressures.

We are quite convinced after these examinations that

our estimate of the lip-shock strength was reasonable and

the strength cvuld indeed be substantial.
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During these computations we noticed that, for a given

Maeh number, the shock angle 0 was constant for a wide
range of Reynolds number and could be given by a simple

interpolation formula

sin _) = 0.7 M. .......

from which the lip-sl:ock strength could be computed and

is shown in Fig. 43 in good overall agreement with the

experimental results. Included in this figure also is a line

for M, = 6.00 by extrapolating the above formula obtained

in the present experimental range. If this extrapolation

holds, no significant change in tile lip-shock strength is

anticipated, even at this higher Maeh number, in this man-

ner of correlation. Physical significance of the approxi-

mately constant shock angle is unknown.

[ I I I I I

sin0 = 0.7M2 -5/6_= 6,TM'32sin28-l,,

1
MI = 2.01

I0 -2 2 4 6 IO -I 2 4 6 I00

P_3/,02

Fig. 43. Computed lip-shock strength with

constant shock angle

By knowing M" and _, we could find the refraction angle

8. Since we already know the flow direction corresponding

to M:',, we could also find the flow direction behind the lip

shock. On the other hand, we can compute the flow direc-

tion corresponding to the base pressure under the assump-

tion of isentropic expansion, i.e., without the lip shock.

Sample comparisons of the two angles thus computed

actually showed good agreement with each other within

a fraction of a degree. Therefore, the flow direction could

be determined with a good approximation by the latter

simple isentropic computation. In fact, the flow direction

determined from the free-shear layer direction in shadow-

graphs agreed quite well with such an estimation (Fig. 44).

Needless to say, this correspondence is only an approxi-

mation in the case of finite shock strength.

C. Experimental Determination of the Lip-Shock Strength

Although the lip-shock strength estimated from shadow-

graphs was believed to be reasonably accurate, it was
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30

felt desirable to experimentally substantiate the assump-

tions involved in the estimation procedure and verify the

finite strength. Since static pressure is rather difficult to

measure, particularly in such a field where the flow direc-

tion is rapidly changing as in the present case, pitot sur-

veys were made under a condition equivalent to the case

shown in Fig. 1, i.e., M, = 2.61, Re., = 1.0 X 10'L In this

example, the separated free-shear layer appears to be

laminar until it approaches the reattachment point, and

is well isolated from the lip shock except in the region

very near the separation edge. Losses in the total pressure

across the bow shock and the lip shock were estimated

to be 0.4% and less than 0.3%, respectively, and the total

pressure other than in the shear layer can therefore be

assumed to be constant and equal to the tunnel supply

pressure (62 cm Hg) for all practical purposes. Thus, the

pitot-pressure distribution, except in the shear layer, could

be subjected to numerical estimate. The raw data of the

pitot surveys are plotted in Figs. 45 and 46.

Interpretations of the flow field are well substantiated

by these measurements. The expansion fan extends all

the way to the lip shock. Jumps in the pitot pressure cor-

respond accurately to the lip-shock locations. Following

the joint between the lip shock and the wake shock, a

small discontinuity in the total pressure indicates the

enthalpy discontinuity across the slip stream.
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In addition to these general observations, minute dis-

continuities were also detected in the pitot-pressure profile

across the free-shear layer. These discontinuities must be

the same slip line as that reported by Charwat and Yakura

(Ref. 17). In many of the shadowgraphs taken at lower
Mach numbers and at moderate to low Reynolds numbers,

two nearly parallel white lines were seen (cf. Fig. 1).
While the outer white line can be recognized as the outer

edge of the free-shear layer due to a large second deriva-

tive of the density profile, the inner edge should have been

seen only as a dark line if there were no anomalies. The

inner white line is now recognized as the slip line since

the locations of the two coincided perfectly. The slip line

appears to be closely related to the separation point and

hence to the dividing streamline, but its cause is not

exactly known. What is believed to be the case, however,

may be explained by the use of Fig. 47. The boundary

layer (A) becomes fatter (B) as it approaches the expan-

sion corner. As the flow goes through the expansion fan,

the shear-layer profile is further fattened and even the

layer very near the surface must be strongly accelerated,

except for the fluid which directly attaches the surface (C)

Now, the flow separates from the surface, and the inner

shear layer begins to develop (D). This situation may be

clearly seen in the pitot-pressure profile at X = 0.25 in.
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Fig.47. Suspected development of free-shear layer

In this situation, the density distribution will be such

that there are two positive maxima of its second derivative

corresponding to the outer edge of the inner shear layer

as well as to the outer edge of the entire free-shear layer,

and one negative maximum corresponding to the inner

edge of the inner shear layer, thus resulting in two white
lines and one dark shade inside of the inner white line

in the shadowgraphs. As the inner shear layer develops, 06
its sharp outer edge gradually dissolves into the whole

free-shear layer, (E) and (F), and the inner white line

fades away. Under this interpretation, the "slip" line seems

to be somewhat of a misnomer since there is no slip in o.4

the sense of slip stream or otherwise. The overshoot in
the pitot pressure distribution experimentally observed
by Charwat and Yakura at the slip line must have given

them an impression of the presence of some kind of slip, 0.2

but should rather be looked upon as no more than the

well-known behavior of pitot tube readings near the outer

edge of high-shear layers such as thin laminar boundary oJ
layers.

This suspected behavior of the free-shear layer is, of
course, closely related to or derived from the idea of two-

layer analysis currently being considered in connection

with the base-pressure prediction. There is some reason

to speculate that the velocity along the dividing stream-

line might overshoot an asymptotic value and then ap-
proach it from above under such circumstances as

considered here, rather than approaching it monotonically
from below.

Further noted is that the initial recompression process

as the flow approaches the reattachment point appears

to be confined within the shear layer. Finally, the center-
line of the reattached viscous wake was observed to be

shifted downward by about 0.025 in. from the geometrical
centerline. The shift, which could also be detectable from

the neck shock locations in the shadowgraph, is probably

due to the imperfect matching of the front and rear parts

of the model rather than possible error in the pitching
angle of the model.

The first of more quantitative examinations of the pitot-
survey data was made in order to determine the center

of the expansion fan. By extrapolation, the center was

found to be located slightly upstream of the separation

edge; when the center was taken to be at X o = -0.04 in.

and Y0 = 0 in. in the coordinate system shown in Fig. 45,
the pitot-pressure data not only correlated well with each

other, but also agreed with the Prandtl-Meyer relation,

Fig. 48. The good agreement should be emphasized for

Y - Yo < 0 as well as for Y - Yo _-_0. The upstream shift

was approximately equal to the computed boundary-
layer thickness, 0.035 in., and its smallness substantiates

the assumption that the expansion fan is centered at the

separation edge, at least in this test case. Consequently,

the static pressure p_ estimated previously from shadow-
graphs can now be trusted.
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Fig. 48. Pitot-pressure distribution in expansion

fan; curve is computed with center at

X,, = --0.04 and Y, = 0

0.8

Since the total pressure was virtually constant across

the lip shock as well as the bow shock, the static pressure

p:, behind the lip shock could be computed from the pitot

pressure and was found to be constant in the region be-

tween the lip shock and the free-shear layer but approx-

imately 10_ smaller than the measured base pressure. A

small streamline curvature is enough to account for this
much pressure difference, but there was no indication of

pressure gradient across the flow to verify the streamline

curvature. Probable cause of the pressure difference is
still unknown.
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Insertion of the pressure probe of a finite size could
cause a local flow distortion and result in erroneous read-

ings. In this ease, however, we are inclined to believe in

this lower static pressure because of the following indirect
evidence. If one denotes by (X, Y) the location of the lip

shock relative to the separation edge,

dY
- Y/X = tan _1 and dX - tan/3

by definition (ef. Fig. 30). The general fommlae for the

lip-shock coordinates are

_uld

X _ exp d_l i.

X, , , eos-'7/(tanfi- tan 7/)

Y X
-- tan 7/

X, X,

& did not, obviously because the shock angle was too

large due to too large values of _. Although admittedly

circumstantial, this piece of evidence appears to verify

that the pressure behind the lip shock is truly lower than

the base pressure.

The above computation relates '1 to X. The pitot and

static pressures in front of the lip shock and hence the

lip-shock strength also were initially computed as func-

tions of _/, but they are now related to X. The computed
distributions of these quantities along the lip shock are

compared in Figs. 50, 51, and 52 with the experimental

values. Thus, the basic assumptions made in estimating

the lip-shock strength have been completely substantiated,

except for the unexpected and as yet unexplainable lower

pressure behind the lip shock. As shown in Fig. 52, the

lip-shock strength reduces as X increases in this test case.

0.20

in which (X,, Y_) are the coordinates of a reference point

on the lip shock. At each given value of '/, the Prandtl- ,_

Meyer relation gives the conditions in front of the lip %
shock, 31:_, p:', and Math angle _._. Now, if one assumes ,_

the static pressure behind the lip shock to be the base

pressure lh, or takes the measured value p3, the lip shock
t

strength will be either .G = pbp:'_ or _:, = p:_/p:_. The shock

angle 0 is then computed from M:_ and either & or _:, by

the oblique-shock relation./9 will then be related to _1by

fl 71q it" - 0, and the integrand in the above formula
can be evahmted at each 7/. Therefore, by knowing the

location (X,, Y ) of one point on the lip shock, the entire

shape of the lip shock outside of the shear layer can be

computed. In the present sample case, (X_, Y_) were o.ol4
chosen to be (0.50, - 0.045). Two shock shapes were ob-

tained for _, and ,G (Fig. 49). The shape obtained from _:,

was found to coincide with the lip shock observed in the

shadowgraph as well as with that determined by the pitot o.olz

surveys (Fig. 45) ahnost perfectly, whereas the one from

4 5

0.2 [
0.3

I Z

X/Xl

Fig. 49. Computed lip-shock shapes; lower curve
is replotted in Fig. 45
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It should be noted that, when the lip shock smoothly

merges to the wake shock at higher Mach numbers but

lower Reynolds numbers, the strength of the merged

shock would continuously increase.

Since the computation procedure has now been con-

firmed, we may extend our computation to find the pitot

pressures in tile Regions 3 through 8 in Fig. 10(a). As

marked by short vertical lines with numbers identifying

the regions in Fig. 46, those computed pitot pressures are

compared with the pitot-pressure distribution at X --=3.5

in., which is approximately _.."_,-in.behind the location

where the lip shock meets the wake shock. Agreements

are seen to be extremely good. Therefore, the pitot surveys

have not only demonstrated the essential adequacy of the

lip-shock-strength estimation procedure but have also
proven that the interpretation of the entire flow field as

judged from the optical observations is correct.

Indicated also in Fig. 46 is the value of pitot pressure

if the flow outside the free-shear layer were to undergo

an isentropic compression by changing its direction

around the reattachment. The experimental pitot pressure
is seen to fall far short of the isentropic value. Therefore,

the wake shock originates so close to the reattachment

point in this test case that nowhere in the flow field does

an isentropic compression take place in the recoinpression

process. This is not to ride out, however, the possibility

of isentropic compression at lower Reynolds numbers or

of pseudoisentropic streamtubewise compression within

the shear layer.

While the test case was mainly aimed at quantitatively

verifying the lip-shock strength, further pitot surveys were

conducted with a boundary-layer trip attached on both

surfaces of the wedge. Although the lip shock was clearly

seen with the tripped boundary layers (Figs. 4a-f and 53)

and the humps in the pressure-recovery distribution,

which are specifically attributable to the lip shock, are

Fig. 53. Shadowgraphs behind a wedge with

boundary-layer trip; from top: M_ --_4.54,

3.51, and 2.61

present even with the naturally provoked transition (Ref.

1), there has been some speculation that the lip shock

might not exist if the boundary layer was turbulent. It

was therefore felt desirable to experimentally confirm
the presence of the lip shock even in the turbulent condi-

tion. The tripped turbulent boundary layers were inher-

ently much thicker than the untripped ones, and the flow

patterns were like Fig. 10(b) at any Mach number with

the lip shock completely imbedded in the free shear

layer. The pitot surveys alone were not capable of deter-

mining the shock strength in such cases, and only the raw

data for/tt_ = 4.54 are shown in Fig. 54, to unequivocally

verify the presence of the lip shock.

Figure 55 shows the pitot pressure distribution at an X
location which was after the reattachment and behind

the location where the lip shock met the wake shock. A

discontinuity of the pitot-pressure profile in the viscous

wake can be identified as the slip stream caused by the

interaction between the two shocks, although the slip
stream, which was also imbedded within the reattached

viscous wake, could not be seen in the shadowgraph
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because of a highly turbulent condition in this case. This
distorted pitot-pressure profile is another manifestation
of the strong effects of the lip shock and implies addi-
tional complications in dealing with the base-pressure
problem theoretically.

As discussed already in reference to Fig. 29 and as
computed in Fig. 49, the shape of the lip shock in the
isentropic field of the expansion fan is concave upward.
It might look somewhat strange that the lip shock is still
concave even when it is completely imbedded in the shear
layer, as particularly seen in the case of tripped boundary

layers. In such cases of substantial lip-shock strengths,
the concave shape may have resulted from a) a strongly
diverging flow field and/or b) a shock wave intensifying

toward the outer edge of the shear layer. In contrast, a
weak lip shock is seen to be convex behind the 17-deg
boattail model, in which case the flow was not diverging
either (cf. Sec. VI-B).

D, Inquiry into the Cause of Lip Shock

It has now been confirmed that the flow associated with

the so-called Prandtl-Meyer expansion is not a simple
expansion, contrary to the assumption usually made, but
actually overexpands first and is then recompressed by the
lip shock of a finite strength. Further experiments were
conducted in an attempt to inquire what really caused the
lip shock.

A prevailing thought on the cause of lip shock, which
seems to have been originally proposed by Charwat and
Yakura (Ref. 17) and has recently been worked out by
Weinbaum and Weiss (Refs. 19, 20), is the coalescence of

the reflected second family of characteristics that originate
from the interaction between the oncoming boundary layer
and the expansion fan (Fig. 56). In this theory the shear
layer is treated as an inviscid rotational field and the re-
flection of the characteristics is assumed to take place at
(or near) the sonic line. This theory will be hereafter re-

ferred to as the inviscid rotational theory. The computed
result is claimed to have good agreement with the Minne-
sota experiment by Larson et al. (Ref. 18), although it is
not quite certain whether the computation has been really
carried out.

LEADING MACH

WAVE

_ EXPANSION WAVE

-"_ ---.. _ _ -_--COMPRESSiON WAVE

SONIC LINE

Fig. 56. Lip-shock formation according to

purely inviscid rotational field theory

(after Weiss and Weinbaum|

The lip shock, however, is observed to be formed im-

mediately at the body surface in almost all of the present
test conditions except at the highest Mach number and
the lowest Reynolds number. Such prompt shock forma-
tions already led us to suspect that the inviscid rotational
theory might not be the essential explanation of the lip
shock formation, since the theory is to result in a relatively
slow coalescence of the reflected wavelets away from the
surface.

On the other hand, the flow over a circular cylinder

experiences an overexpansion, and the boundary layer is
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bound to separate in the region of adverse pressure gradi-

ent (Ref. 21). Since the streamline in a viscous layer makes

a finite deflection at the separation point given by

_3 aT,,/ dp
tan a = dx / dx

where T(,is the shearing stress at the surface (y = 0) (Ref.
15), and since the sonic line must be located close to the

surface after the overexpansion, the so-called separation

shock could be formed very near the surface. At first sight,
it might not be easy to visualize that the same mechanism

could take place also at the sharp separation edge, but this

viscous separation effect was suspected to be the real

culprit for the lip-shock formation because of the apparent

resemblance between the separation shock and the lip
shock.

Surface-pressure distribution, particularly near the sepa-
ration edge, was measured first in order to obtain an in-

sight into the overexpansion phenomenon and the cause of

lip shock. It is well known that the surface pressure before

the separation should gradually decrease toward the

separation edge because the effect of the expansion fan

propagates upstream through the subsonic portion of the

approaching boundary layer. The surface-pressure distri-
bution on the base, on the other hand, has been conceded

to be uniform except in the case of low density and low

Reynolds number (Ref. 22).

Our measurements were made to the point as close as

0.031 in. from the separation edge, and the results are

plotted in Fig. 57a--d. The upstream effect is seen to extend

to the distance of approximately the boundary-layer thick-
ness as expected and in accord with the location of the

center of the expansion fan determined previously,. What

was not expected was a sharp overexpausion in the surface

pressure on the base face immediately behind the edge

which was consistently observed for free-stream Mach

numbers greater than 3.51. A similar overexpansion might

exist at smaller Mach numbers in a narrower region and in
a lesser amount.
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Such a pressure distribution reminded us of a subsonic

flow around a sharp comer, as can be found in the incom-

pressible potential flow or in the experimental pressure

distribution around a flap hinge of an aerofoil, and led us

to believe, tentatively, that the flow adjacent to tile wedge

surface must have turned sharply around the separation

edge and then separated from the base face in the region

of rapidly rising pressure. This suspected flow behavior and

the lip-shock formation that would result are schematically

depicted in Fig. 58(a).'

Inspired by such new experimental information and tile

conjecture derived thereof (Ref. 23), Weinbaum (Ref. 24)

made a theoretical study on the behavior of a viscous fluid

'One may tend to draw the same conclusion from shadowgraphs,

e.g., Fig. 1, in which the separation point and the root of the lip

shock appear to be visibly below the separation edge. Optical dis-
tortion inherent to the shadowgraph technique, however, increases

the image of the base height appreciably larger than the tree 1-in.

height. Even ff the separation tndy occurs below the edge, its loca-

tinn must be actually very close to the edge as judged from the

shadnwgraphs.

near the 90-deg separation edge. He found that the separa-

tion point was indeed on the base face if the upstream

effect of the expansion around tile edge was taken into

account. The streamline pattern obtained by him is repro-

duced in Fig. 59, and is quite similar to what was specu-

lated by the present author in Fig. 58(a). Although the

theory is restricted to the slow :notion of an incompressible

viscous fluid, the flow behavior near the surface may be

quite similar in the supersonic flow also. \Veinbaum is now

inclined to believe that the concave streamline pattern

above the dividing streamline and near the separation

point is directly responsible for the lip-shock formation,

rather than the slower and weaker purely inviscid rota-

tional effect which he also computed previously. The

pressure distribution on the base face as computed from

his formula is also quite similar to our experimental re-

suits (Fig. 60).

The overexpansion as seen in the surface-pressure distri-

bution is more pronounced at higher Mach numbers and

at larger Reynolds numbers, and is consistent with the
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lip-shock strengths. Examination of the dependence on

the Reynolds number of the pressure distribution over the

base face indicates that the overexpansion is pronounced

at high and low Reynolds numbers but not so much at

intermediate Reynolds numbers, as perhaps best seen

among the pressure distributions for M, = 4.00. This dou-

ble dependence on the Reynolds number suggests that
there might be two different mechanisms for the over-

expansion. Furthermore, at the maximum Maeh number

investigated (M, = 4.54) and at the intermediate Reynolds

numbers 0.70 × 10_ and 0.43 X 10% local peaks of the

pressure distribution exists at Y = 0.06 and 0.1 in., respec-

tively, immediately following the overexpansion. No addi-
tional investigations have been made on these details.

Although a speculation as to the possible flow behavior

around the separation edge could be put forward based

upon the surface-pressure distribution, all the phenomena,

expansion, overexpansion, separation, recompression, and
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lip shock, are crammed into a very small region and are

difficult to identify. In an attempt to disclose what phe-

nomena are really taking place, the rounded-edge models
were tested.

Figure 61a is a set of shadowgraphs behind the rounded

wedges of various radii, taken at an identical free-stream
condition. It is first noted that the variation of the shock

pattern with the edge roundings is that of a gradual change

from the shock pattern behind the sharp-edged regular

wedge. Therefore, the separation and the shock-formation

phenomena must be essentially the same for all the models.

On all the rounded-edge models, on the other hand, it

can be clearly seen that the flow separates from the curved

portion of the body with a certain deflection angle and that

the lip shock emanates at or near the separation point. This

situation is schematically depicted in Fig. 58(b) and en-
dorses the view that the lip shock is formed in exactly the

same manner as the so-called separation shock, which,

most prominently, emerges from a circular cylinder. Be-
cause of the observation in the preceding paragraph that

the limiting case of the regular wedge is not significantly
different from the rounded ones, it is reasonable to con-

elude that the essential cause of the lip shock is the viscous

separation effect even in the case of sharp regular wedge.

Before proceeding to the results of surface-pressure
measurements on the rounded models, attention is drawn

Fig. 61a. $hadowgraphs at M_ -_ 3.51 and Re_ =

1.i X 10_. From top: regular wedge; rounded

wedges r --_0.05, 0.10, 0.25, and 0.45 in.

Fig. 61b. Shadowgraphs behind fully-rounded wedge;

from top: M1 --_4.54, 3.51, and 2.61; at bottom: M_ =
3.51 with boundary-layer trip; Reynolds number

based on diameter and free-stream

condition: 3 _ 1if'
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to the shock patterns behind the fully-rounded model,

Fig. 6lb. It is well known that a circular cylinder produces

the separation shock which, however, was thought to

be reasonably weak and did not significantly affect the

pressure-recovery process, particularly because of its up-

ward orientation even at M, = 6 (ef. Dewey, Ref. 21).

These observations were made at a relatively low Reynolds

number. The present model, on one hand, eliminates the
low subsonic field behind the detached bow shock which

exists in front of a circular cylinder. The shadowgraphs

shown in Fig. 61b, moreover, were taken at a higher

Reynolds number, approximately 3 × 10 _',based upon the

free-stream condition and the diameter of the fully

rounded tail end (0.9 in.), compared with approximately

2 X 104 in Dewey's experiment. Under such circum-

stances, the lip shock can be seen to be tilted downward

and to be strong enough to form the slip stream. There-

fore, the effects of the lip shock must be present in the

pressure-recovery process and in the near-wake velocity

profile. Such complications are even more enhanced, as

with any other models, when the wedge boundary layers
are made turbulent by the tripping device (Fig. 61b, at

bottom).

Perhaps, the most advanced theory concerning the base

flow and base pressure is that developed by Reeves and

Lees (Ref. 25). One task involved in the theory is to join

the separated free-shear layer and the reattached near-

wake flow with the oncoming boundary layer. When the

boundary layer separates from a sharp edge, it is indeed

quite difficult to theoretically cope with the many phe-

nomena that take place nearly simultaneously in the sepa-

rating flow. Therefore, the joining procedure leaves a

considerable uncertainty. The fully rounded model was
and still is being tested in order to provide experimental

data which can be compared with a more elaborate version

of the theory, for the theory might be able to deal with

the separation and even the lip-shock formation in this case

where the radius of curvature is much larger than the

boundary-layer thickness. It is hoped that the theory can

be made complete and will succeed in the ease of low

Reynolds numbers in which the shock quickly emerges out

of the boundary layer and does not participate in the pres-

sure-recovery process (e.g., of. Fig. 61a, at bottom). It is

certain, however, that the additional complications have
to be taken into account in the turbulent case in which the

lip shock is imbedded in the free-shear layer and interacts
with the wake shock, which itself is formed within the

reattached shear layer. This interaction results in the slip
stream, which is also laid inside of the viscous near wake.

The previous observations deduced from the shadow-

graphs were also substantiated by the surface-pressure

distributions presented in Figs. 62-65. In all cases, the

flow indeed overexpands to cause a minimum pressure

and is then recompressed to the nearly constant base pres-

sure, as can be most clearly seen on the largest two radii.
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This behavior is similar to what has already been observed

by Dewey on a circular cylinder. With this sort of pressure

distribution, it is now understandable that the boundary

layer can separate from the surface with a finite deflection

angle in the region of adverse pressure gradient, as already

depicted in Fig. 58(b).

In general, the higher the Mach number, the more the

flow overexpands. Tile most interesting observation is the

tendency that, for a given free-stream condition, the flow

follows the surface longer and overexpands more as the

radius of curvature is decreased. Compare, for example,

the pressure distributions on the four rounded-edge models

at M, = 4.54 and the highest Reynolds number. On the

0.05-in. model, the pressure minimum is about 0.066 at 22.5

deg; on the 0.10-in. model, it is 0.097 at around 22.5 deg

(unfortunately, the models were not provided with a suffi-

cient number of pressure taps to distinguish any difference'

in overexpansion angles); but the overexpansion is down

only to 0.119 at 45 deg and 0.162 at 56.25 deg, respectively,

on the 0.25-in. model and on the 0.45-in. model. The angles

being measured from the base face, these angles mean

73.5-, 73.5-, 51-, and 39.75-deg expansions from the wedge

surface, respectively. This tendency points out the possi-

bility that the t].ow might turn around the sharp edge of

the regular wedge. Yet, it is reasonable to expect that the

true separation point must be extremely close to the edge.

One final remark on the dependence of the overexpan-

sion on the Reynolds number is in order. The measured

pressure distributions show that the flow overexpands

more as the Reynolds number increases. This dependence,

as well as the other observations stated above, is in accord

with the variations of the lip-shock strength. On the con-

trary, Dewey's pressure distributions on a circular cylinder

clearly demonstrate the opposite; the flow overexpands

more and the separation point moves downstream with de-

creasing Reynolds number. Other than pointing out the

difference in model geometry, no direct explanations of

the contrasting results will be offered at this time. We are
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reminded, however, that the base pressure increases with

increasing Reynolds number in Dewey's test conditions,

whereas our Reynolds-number range is such that the base

pressure decreases. Undoubtedly, the overexpansion is

strongly affected by the base pressure, which is chiefly
controlled by the reattachment condition, and cannot be

separately considered as the behavior of the separating
shear flow.

Experience with the boattai] models was instructive in

many respects. The surface-pressure distributions are pre-
sented in Figs. 66 a, b, c; 67 a, b, c, and 68 a, b, c. A set of

shadowgraphs taken at an identical free-stream condition

M_ = 2.61 and Re., = 1.0 X 10" is shown in Fig. 69.
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Fig. 38 in comparison with Fig. 37. The shadowgraph (the

second from the top in Fig, 69) also clearly shows that the

orientation of the lip shock is opened out in comparison

with that off the regular wedge (the top shadowgraph) and

that the slip stream can be seen only very faintly.

With the 10-deg boattail model, the flow still makes an

expansion at the rear edge under most of the test condi-

tions, except at M, = 2.61 and very low Reynolds numbers

in which cases the pressure distribution and the flow be-

havior resemble those of the steeper boattail model. The

pressure on the boattail surface is further reduced from

that on the 5-deg boattail model. For example, for the

third shadowgraph in Fig. 69 the expansion is only from

about 0.47 to 0.412 compared with 1.5 to 0.265 for the reg-

ular wedge and 0.67 to 0.373 for the 5-deg model. The

expansion having been further reduced, the lip shock is

indeed seen to be feeble, and the estimated strength was

1.09. The slip stream was only vaguely visible in the

schlieren picture but could not be detected in the shadow-

graph.

Fig. 69. Shadowgraphs at M1 = 2.61 and

Re_ = 1.0 X 10_; from top: regular wedge,

5-, 10-, and 17-deg boattail wedges

It is first noticed that the interaction between the boun-

dary layer and the expansion fan at tile expansion corner

preceding the boattail takes quite a long distance so that

the surface pressure on the boattail portion seldom reaches

the inviscid value which is indicated by a horizontal broken

line in each figure.

In the case of the 5-deg boattail model, the flow always

encounters an expansion at the rear separation edge under

all the conditions tested. Therefore, the regular lip shock

emerges from the separation edge. By boattailing, how-

ever, the surface pressure before separation is drastically

reduced and consequently the amount of expansion is also

much less than in the case of regular wedge. The reduction

of expansion is in fact even more enhanced because of the

larger base pressure behind the boattail models. Since the

lip-shock strength could be correlated with the amount of

expansion, the lip shock off the boattail models must be

weaker under the same test condition as already shown in

In contrast, over the steepest 17-deg boattail mode], the

flow did not expand at the rear edge under the present

test conditions. Instead, there was a pressure minimum on

the boattail surface lower than the base pressure, and the

boundary layer could separate in the region of adverse

pressure gradient. For the shadowgraph at the bottom of

Fig. 69, for example, the surface pressure reaches the mini-

mum of 0.29 but the base pressure is 0.36. The boundary

layer can be seen to have separated from the boattail sur-

face, and a shock wave is formed from the separation. The

shock wave is therefore the conventional separation shock,

but it is emphasized that its appearance is indeed quite

similar to the regular lip shock shown in tile top three

shadowgraphs. This is to reassert that the lip shock and

the separation shock are not essentially different. The

shock, furthermore, appears to be stronger than that of the

5-deg model as well as that of the 10-deg model; the shock
is more distinct and the slip stream can be seen more

clearly.

The 17-deg model was tested also with the boundary-

layer trips. The pressure distributions are included in Figs.

68 a, b, c, and the shadowgraphs are presented in Fig. 70.

Because of the thickened boundary layer, the interaction

at the expansion corner preceding the boattail portion is

even slower and the pressure on the boattail surface is

larger than the untripped case at a comparable free-stream

condition. Under the conditions tested, the turbulent boun-

dary layer did not separate from the boattail surface, and

there was always a small expansion at the rear edge. The
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The experimental evidence so far presented has led to

the conclusion, beyond reasonable doubt, that the lip

shock is not essentially different from the separation shock

even in the case of a sharp regular wedge. Experimental

results of the knife-edge model, however, turned out to

be somewhat of a surprise to us. The test of this model

was originally conceived based upon an expectation that,

Fig. 70. Shadowgraphs behind 17-deg boattail wedge

with boundary-layer trip; from top: M_ = 4.54,
3.51, and 2.61

base pressure was either lower (M1 = 2.61) or higher

(M1 = 3.51 and 4.54) than the estimated isentropic pres-

sure corresponding to the boattail angle. Because of the

smallness of the expansion, only weak waves emanated

from the rear edge. Perhaps, these weak waves observable

in the shadowgraphs were no more than a narrow expan-

sion fan which was imbedded in the thick free-shear layer.

The convex wave pattern, contrary to the generally con-

cave lip shock, may be due to this situation. Since a sub-

stantial expansion existed at the expansion corner, it is

conceivable that the near-surface portion of the tripped

boundary layer might have been partially laminated

(Refs. 26, 27). A well-defined line emanating from the rear

edge, which resembles the laminar free-shear layer and

must be the outer edge of the inner shear layer (cf. Fig. 47),

suggests this possibility. By the boattailing, in any event,

the lip-shock strength is drastically reduced in the laminar

case, or the lip shock itself is almost entirely eliminated in

the turbulent case. Hence the effect of the lip shock on the

pressure-recovery distribution, for example, can be sub-

stantially alleviated, as demonstrated by Roshko.

Fig. 71. Comparative shadowgraphs for regular wedge

and knife-edge wedge; top set: M_ --_ 2.61,

Re._,= 0.65 >( 10'_; bottom set: M_ --_ 3.51

with boundary-layer trip; in each set,

top: regular wedge, bottom:

knife-edge model
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if the blade tip is sufficiently sharp, the oncoming boun-

dary layer would directly leave from the tip without going

through the process of overexpansion and viscous-layer

separation front the base face, and therefore the lip shock

might not be formed.

Quite contrary to our naive expectation, not only tile

base pressure was virtually unchanged (Fig. 17), but also

the lip shock was formed ahnost exactly in the same
manner under either laminar or turbulent conditions

(Fig. 71), and the lip-shock strength was correlated per-

fectly with the regular wedge results (Fig. 33). In other

words, tile knife-edge model resulted in nothing different

from the regular wedge.

In order to reconcile the difference between the expec-

tation and the experimental evidence, we may speculate

that a more probable flow behavior around either the knife

edge or tile regular separation edge is as sketched in Fig.

58(c) rather than the possibly oversimplified Fig. 58(a).
\Ve are not at all certain of this view because it is difficult

to experimentally verify the flow behavior in an extremely

narrow region and because other possibilities are equally

probable. For example, the separation could have taken

place within such a short distance (0.001 in.) from the
separation edge that there was no difference between the

two. Or, the separation from the knife edge might be on
the inner surface of the blade but at such a short distance

from the tip that, again, the difference, if any, was un-

noticeable. More rigorous theoretical studies on the sep-

aration phenomena are indeed desirable in order to resolve

these questions.

VII. Summary

The pres_'nt investigation was conducted in the 20-in.

supersonic wind tunnel at the Jet Propulsion Laboratory

in the Math number range 2.0-4.5 and in the Reynolds

number range 0.2 X 10"-2.0 X 10" in order to obtain ex-

tensive data on the base pressure of a wedge, 6 deg half-

angle and 1-in. base height. However, more emphasis was

placed on the investigations of the so-called lip shock.

The base pressure was measured not only behind the

wedge, but also with a wedge-plate configuration in which

the plate surface was aligned with the centerline of the

wedge, in an effort to find a difference in base pressures
for the different reattachment conditions. The difference

was found to be small, but the base pressure of the wedge

alone was somewhat smaller than that of the wedge-plate

configuration. The measurements were also made on

wedges of basically the same dimension but with various

separation-edge shapes, including razor-sharp knife edges,

rounded edges of four different radii, and three boattails.
These models were tested to determine the cause of the

lip shock rather than to obtain engineering data.

Relative orientation of the wake shock and the lip shock

varies appreciably depending on the Mach munber as

well as the Reynolds number. The static-pressure recovery

distribution in tile wake was also found to assume a variety

of patterns, and the appearance of peak and hump in the

pressure distribution was attributed to the interaction be-
tween the two shocks. Tile interaction caused a distortion

in the near-wake velocity profile in some cases.

The lip-shock strength (the static-pressure ratio across

the shock) was estimated from shadowgraphs. Contrary to

the prevailing belief, the strength was found to be sub-

stantial (Ref. 28). The estimation was affirmed by cross-

examinations of the procedure and also more directly by

pitot-pressure surveys.

An inquiry was made into the cause of the lip shock

by measuring surface-pressure distribution, particularly

near the separation edge, as well as by observing shock

patterns on the wedges of various separation-edge shapes.

The essential mechanism to form the lip shock appears to

be the viscous separation phenomena similar to the sep-

aration shock from a circular cylinder, rather than the
inviscid rotational effect.
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